Embedding Deep Metric for Person Re-identification: A Study Against Large Variations
نویسندگان
چکیده
Person re-identification is challenging due to the large variations of pose, illumination, occlusion and camera view. Owing to these variations, the pedestrian data is distributed as highly-curved manifolds in the feature space, despite the current convolutional neural networks (CNN)’s capability of feature extraction. However, the distribution is unknown, so it is difficult to use the geodesic distance when comparing two samples. In practice, the current deep embedding methods use the Euclidean distance for the training and test. On the other hand, the manifold learning methods suggest to use the Euclidean distance in the local range, combining with the graphical relationship between samples, for approximating the geodesic distance. From this point of view, selecting suitable positive (i.e. intra-class) training samples within a local range is critical for training the CNN embedding, especially when the data has large intra-class variations. In this paper, we propose a novel moderate positive sample mining method to train robust CNN for person re-identification, dealing with the problem of large variation. In addition, we improve the learning by a metric weight constraint, so that the learned metric has a better generalization ability. Experiments show that these two strategies are effective in learning robust deep metrics for person re-identification, and accordingly our deep model significantly outperforms the state-of-the-art methods on several benchmarks of person re-identification. Therefore, the study presented in this paper may be useful in inspiring new designs of deep models for person re-identification.
منابع مشابه
Deep adaptive feature embedding with local sample distributions for person re-identification
Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their c...
متن کاملConstrained Deep Metric Learning for Person Re-identification
Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...
متن کاملNonlinear Local Metric Learning for Person Re-identification
Person re-identification aims at matching pedestrians observed from non-overlapping camera views. Feature descriptor and metric learning are two significant problems in person re-identification. A discriminative metric learning method should be capable of exploiting complex nonlinear transformations due to the large variations in feature space. In this paper, we propose a nonlinear local metric...
متن کاملPerson re-identification with fusion of hand-crafted and deep pose-based body region features
Person re-identification (re-ID) aims to accurately retrieve a person from a large-scale database of images captured across multiple cameras. Existing works learn deep representations using a large training subset of unique persons. However, identifying unseen persons is critical for a good re-ID algorithm. Moreover, the misalignment between person crops to detection errors or pose variations l...
متن کاملDeep Metric Learning for Practical Person Re-Identification
Various hand-crafted features and metric learning methods prevail in the field of person re-identification. Compared to these methods, this paper proposes a more general way that can learn a similarity metric from image pixels directly. By using a “siamese” deep neural network, the proposed method can jointly learn the color feature, texture feature and metric in a unified framework. The networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016